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Abstract: The stability of N-centered radicals and
radical cations of potential relevance in C–H amida-
tion reactions has been quantified using highly accu-
rate theoretical methods. Combination with available
C–H bond energies for substrate fragments allows
for the prediction of reaction enthalpies in 1,5-hydro-
gen atom transfer (HAT) steps frequently encoun-
tered in reactions such as the Hofmann–Lçffler–
Freytag (HLF) reaction. Protonation of N-radicals is
found to be essential in classical HLF reactions for
thermochemically feasible HAT steps. The stability
of neutral N-radicals depends strongly on the type of
N-substituent. Among the electron-withdrawing sub-

stituents, the trifluoroacetyl (TFA) group is the least
and the toluenesulfonyl (tosyl) group the most stabi-
lizing. This implies that TFA-aminyl radicals have
the broadest and tosyl-aminyl radicals the smallest
window of synthetic applicability. In how far the in-
tramolecular C–H amidation reactions compete with
hydrogen abstraction from common organic solvents
can be judged based on a comparison of reaction
thermodynamics.

Keywords: amination; C–H activation; radical stabil-
ity; remote functionalization

Introduction

The search for metal-free C–H bond amidation reac-
tions has recently led to a resurgence in studies of
what may broadly be seen as variants of the Hof-
mann–Lçffler–Freytag (HLF) reaction.[1–4] Starting
from secondary amine substrates these reactions are
believed to involve formation of N-haloamines as
direct precursors of the respective N-centered radi-
cals, generation of which is promoted by photochemi-
cal or thermal activation. As illustrated in Scheme 1

for the example of N-bromo-2-propylpiperidine (1),
the strongly acidic reaction conditions used in the
classical HLF reaction lead, through thermal or pho-
tochemical activation, from bromoaminium ion 2 to
transient amine radical cation 3. Kinetically preferred
1,5-hydrogen atom transfer (1,5-HAT) then leads to
formation of C-centered radical 4, whose halogen
atom abstraction from the (protonated) N-haloamine
substrate 1 closes the radical chain and generates the
haloalkylamine product 5. The final cyclization to 5-
membered ring pyrrolidine 6 then follows a classic
SN2 mechanism and often requires basic reaction con-
ditions. That a similar sequence can be developed
under neutral conditions has been demonstrated by
Corey et al. for the example shown in Scheme 2.[5a]

Building on earlier work by Barton et al. on lactone
syntheses,[5b] trifluoroacetamide 7 is in this case first
transformed quantitatively to bromoamide 8.

Photochemical activation of this precursor is in this
case believed to generate amidyl radical 9, followed
by a 1,5-HAT step to generate substrate radical 10.
The radical chain is again completed by bromine ab-
straction from (neutral) precursor 8 to yield bromide
11. Base-induced cyclization then yields the final pro-
line derivative 12. More recently variants of the HLF
reaction integrate precursor synthesis, (photochemi-

Scheme 1. Essential mechanistic steps in the classical HLF
reaction of bromopiperidine 1 under acidic conditions.
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ABSTRACT: The Hofmann−Löffler−Freytag (HLF) reaction serves as a late-stage
functionalization technique for generating pyrrolidine heterocyclic ring systems. Con-
temporary HLF protocols utilize in situ halogenated sulfonamides as precursors in the
radical-mediated rearrangement cycle. Despite its well-established reaction mechanism,
experiments toward the detection of radical intermediates using EPR techniques have only
recently been attempted. However, the obtained spectra lack the distinct features of the N-
centered radicals expected for the employed reactants. This paper presents phenyl-
butylnitrone spin-trapped C-centered and N-centered radicals, generated via light irradiation
from N-halogen-tosyl-sulfonamide derivatives and detected using EPR spectroscopy. NMR
spectroscopy and DFT calculations are used to explain the observed regioselectivity of the
HLF reaction.

■ INTRODUCTION
Modern C−H functionalization chemistries have introduced
late-stage functionalization (LSF) strategies in medicinal
chemistry, targeting drug lead C−H bonds for creating new
analogues. This toolbox includes photoredox-mediated and
radical reactions and among them, amination reactions for the
direct formation of C−N bonds.1,2 Recently, the focus is
shifting from metal to organocatalytic protocols, paving the
way to sustainability and adhering to green chemistry
principles to minimize waste and improve yield and atom
economy.3 This approach aligns with the EU’s sustainable
development policy.4,5 Numerous research groups are
exploring new C(sp3)-H functionalization reactions with high
chemo-, regio-, and stereoselectivity. The Hofmann−Löffler−
Freytag (HLF) reaction, used for building pyrrolidine (and in
some cases, also piperidine) ring systems, is among photo-
activated amination reactions without metal catalysis.6,7 The
HLF reaction, first discovered in synthetic studies of N-
haloamines,8−11 is a multistep process involving nitrogen atom
activation through halogenation, N-centered radical generation
via irradiation, intramolecular hydrogen atom transfer (HAT),
and radical termination with cyclization to form the final C−N
bond (Scheme 1).
Contemporary adaptations of the HLF reaction employ

toluenesulfonyl (tosyl, Tos)-activated amines (1), which
undergo in situ iodination at the nitrogen atom (2) via an
iodine source and a co-oxidant. The formation of an N-
centered radical (3) was recently examined using EPR
spectroscopy (Figure 1).12

However, the obtained spectra (I, in green), while
presenting a triplet indicative of the nitrogen hyperfine
splitting, raised questions due to issues such as broad line
width, a high g-factor (2.0064) value for the proposed N-
centered radical, and the absence of α-hydrogen splitting.
Calculated EPR spectra for a model compound of 3 are shown
in Figure 1 (II, orange line).13 The spectra of the ditosylated
aminoxyl radical (III, in blue) fit with the EPR parameters of I,
thus suggesting this species to be the correct assignment of the
EPR spectra I.14 Neither C-centered radical (4) nor C5-iodo
functionalized (5) intermediates were observed in the EPR and
NMR studies. The only confirmed product in this reaction was
the pyrrolidine ring compound (6). Experimental attempts for
in situ generation of N-centered radicals and detection via
time-resolved EPR included N-isopropyl-4-methoxybenzene-
sulfonamide as a radical precursor under electrochemical
conditions.15 It is, however, likely that the detected radical is
not an amidyl radical but a nitroxide radical instead. A reaction
of the observed radical with 5,5-dimethyl-1-pyrroline-N-oxide
(DMPO) did not occur, which is consistent with stable
nitroxide radicals. The experimentally observed hyperfine
coupling constant (hfc) value for hydrogen at C2 is
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ABSTRACT: The Hofmann−Löffler−Freytag (HLF) reaction serves as a late-stage
functionalization technique for generating pyrrolidine heterocyclic ring systems. Con-
temporary HLF protocols utilize in situ halogenated sulfonamides as precursors in the
radical-mediated rearrangement cycle. Despite its well-established reaction mechanism,
experiments toward the detection of radical intermediates using EPR techniques have only
recently been attempted. However, the obtained spectra lack the distinct features of the N-
centered radicals expected for the employed reactants. This paper presents phenyl-
butylnitrone spin-trapped C-centered and N-centered radicals, generated via light irradiation
from N-halogen-tosyl-sulfonamide derivatives and detected using EPR spectroscopy. NMR
spectroscopy and DFT calculations are used to explain the observed regioselectivity of the
HLF reaction.

■ INTRODUCTION
Modern C−H functionalization chemistries have introduced
late-stage functionalization (LSF) strategies in medicinal
chemistry, targeting drug lead C−H bonds for creating new
analogues. This toolbox includes photoredox-mediated and
radical reactions and among them, amination reactions for the
direct formation of C−N bonds.1,2 Recently, the focus is
shifting from metal to organocatalytic protocols, paving the
way to sustainability and adhering to green chemistry
principles to minimize waste and improve yield and atom
economy.3 This approach aligns with the EU’s sustainable
development policy.4,5 Numerous research groups are
exploring new C(sp3)-H functionalization reactions with high
chemo-, regio-, and stereoselectivity. The Hofmann−Löffler−
Freytag (HLF) reaction, used for building pyrrolidine (and in
some cases, also piperidine) ring systems, is among photo-
activated amination reactions without metal catalysis.6,7 The
HLF reaction, first discovered in synthetic studies of N-
haloamines,8−11 is a multistep process involving nitrogen atom
activation through halogenation, N-centered radical generation
via irradiation, intramolecular hydrogen atom transfer (HAT),
and radical termination with cyclization to form the final C−N
bond (Scheme 1).
Contemporary adaptations of the HLF reaction employ

toluenesulfonyl (tosyl, Tos)-activated amines (1), which
undergo in situ iodination at the nitrogen atom (2) via an
iodine source and a co-oxidant. The formation of an N-
centered radical (3) was recently examined using EPR
spectroscopy (Figure 1).12

However, the obtained spectra (I, in green), while
presenting a triplet indicative of the nitrogen hyperfine
splitting, raised questions due to issues such as broad line
width, a high g-factor (2.0064) value for the proposed N-
centered radical, and the absence of α-hydrogen splitting.
Calculated EPR spectra for a model compound of 3 are shown
in Figure 1 (II, orange line).13 The spectra of the ditosylated
aminoxyl radical (III, in blue) fit with the EPR parameters of I,
thus suggesting this species to be the correct assignment of the
EPR spectra I.14 Neither C-centered radical (4) nor C5-iodo
functionalized (5) intermediates were observed in the EPR and
NMR studies. The only confirmed product in this reaction was
the pyrrolidine ring compound (6). Experimental attempts for
in situ generation of N-centered radicals and detection via
time-resolved EPR included N-isopropyl-4-methoxybenzene-
sulfonamide as a radical precursor under electrochemical
conditions.15 It is, however, likely that the detected radical is
not an amidyl radical but a nitroxide radical instead. A reaction
of the observed radical with 5,5-dimethyl-1-pyrroline-N-oxide
(DMPO) did not occur, which is consistent with stable
nitroxide radicals. The experimentally observed hyperfine
coupling constant (hfc) value for hydrogen at C2 is
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J.; Muñiz, K. Copper-Catalyzed N-F Bond Activation for Uniform
Intramolecular C-H Amination Yielding Pyrrolidines and Piperidines.
Angew. Chem., Int. Ed. 2019, 58 (26), 8912−8916.
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